Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Risks from human intervention in the climate system are raising concerns with respect to individual species and ecosystem health and resiliency. A dominant approach uses global climate models to predict changes in climate in the coming decades and then to downscale this information to assess impacts to plant communities, animal habitats, agricultural and urban ecosystems, and other parts of the Earth’s life system. To achieve robust assessments of the threats to these systems in this top-down, outcome vulnerability approach, however, requires skillful prediction, and representation of changes in regional and local climate processes, which has not yet been satisfactorily achieved. Moreover, threats to biodiversity and ecosystem function, such as from invasive species, are in general, not adequately included in the assessments. We discuss a complementary assessment framework that builds on a bottom-up vulnerability concept that requires the determination of the major human and natural forcings on the environment including extreme events, and the interactions between these forcings. After these forcings and interactions are identified, then the relative risks of each issue can be compared with other risks or forcings in order to adopt optimal mitigation/adaptation strategies. This framework is a more inclusive way of assessing risks, including climate variability and longer-term natural and anthropogenic-driven change, than the outcome vulnerability approach which is mainly based on multi-decadal global and regional climate model predictions. We therefore conclude that the top-down approach alone is outmoded as it is inadequate for robustly assessing risks to biodiversity and ecosystem function. In contrast the bottom-up, integrative approach is feasible and much more in line with the needs of the assessment and conservation community. A key message of our paper is to emphasize the need to consider coupled feedbacks since the Earth is a dynamically interactive system. This should be done not just in the model structure, but also in its application and subsequent analyses. We recognize that the community is moving toward that goal and we urge an accelerated pace.more » « less
-
Abstract Tonle Sap Lake in Cambodia is arguably the world's most productive freshwater ecosystems, as well as the dominant source of animal protein for the country. The rapid rise of hydropower schemes, deforestation, land development and climate change impacts in the Mekong River Basin, however, now represent serious concerns in regard to Tonle Sap Lake's ecological health and its role in future food security. To this end, the present study identifies significant recent warming of lake temperature and discusses how each of these anthropogenic perturbations in Tonle Sap's floodplain and the Mekong River Basin may be influencing this trend. The lake's dry season monthly average temperature increased by 0.03°C/year between 1988 and 2018, being largely in synchrony with warming trends of the local air temperature and upstream rivers. The impacts of deforestation and agriculture development in the lake's floodplain also exhibited a high correlation with an increased number of warm days observed in the lake, particularly in its southeast region (agricultureR2 = .61; deforestationR2 = .39). A total of 79 dams, resulting in 72 km3of volumetric water capacity, were constructed between 2003 and 2018 in the Mekong River Basin. This dam development coincided with a decreasing trend in the number of dry season warm days per year in the lower Mekong River, while Tonle Sap Lake's number of dry season warm days continued to increase during this same period. The present study revealed that Tonle Sap Lake's temperature trends are highly influenced by temperature trends in the local climate, agriculture development and deforestation of the lake's watershed. Although there were no noticeable impacts observed from upstream dam development in the Mekong River Basin, local‐to‐regional agricultural and land management of the lake's watershed appear to be effective strategies for maintaining a stable thermal regime in the lake in order to facilitate maximum ecosystem health.more » « less
An official website of the United States government
